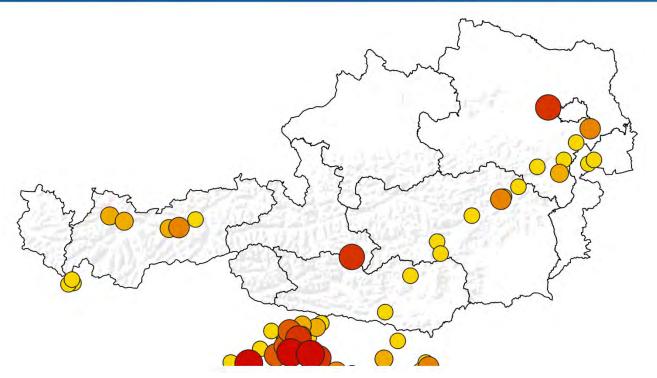

Erdbebengefährdungskarte für Österreich

Stefan Weginger

Maria del Puy Papi-Isaba, Helmut Hausmann, Wolfgang Lenhardt

Motivation



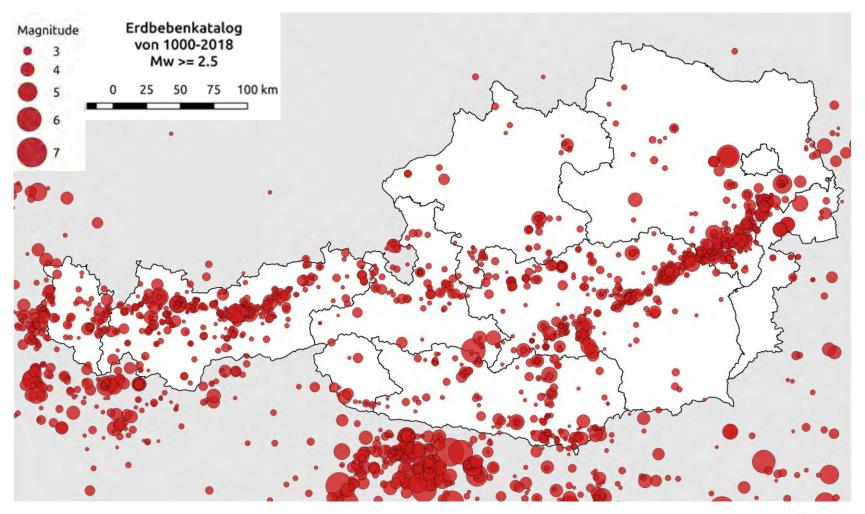
Erdbebenkatalog

- Historische Erdbebenforschung 1000 - 1900
- Makroseismische Daten
 Seit ~1900 Bebenformulare
- Seismische Stationen
 Seit 2004 digitales Netzwerk

Schadensbeben in Österreich und Umgebung

Bebenhäufigkeit in Österreich

Intensität	Zeitspanne	Auswirkung
IV	1 Monat	Deutlich verspürt
V	6 Monate	Stark verspürt
VI	2-3 Jahre	Leichte Gebäudeschäden
VII	~30 Jahre	Gebäudeschäden - 1972 Seebenstein
VIII	>100 Jahre	Starke Gebäudeschäden - 1927 Schwadorf

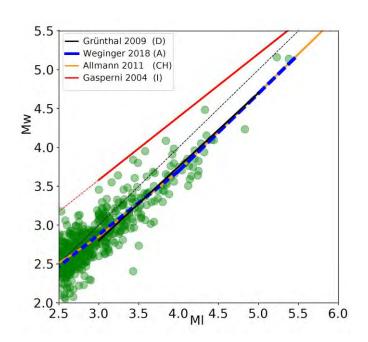

I_o= VII - VIII 1689 Innsbruck 1886 Nassreith 1930 Namlos 1972 Seebenstein

I_o= VIII 1267 Kindberg 1590 Riederberg 1670 Hall in Tirol 1927 Schwadorf

I_o= IX 1201 Katschberg 1590 Riederberg

Erdbebenkatalog

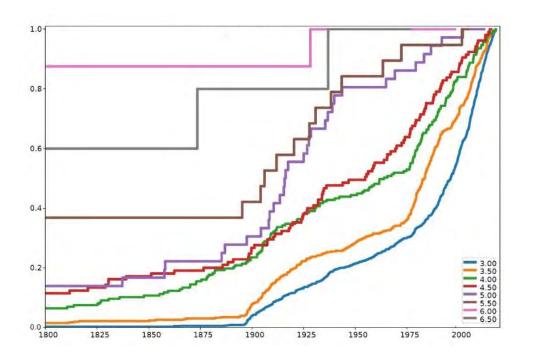
Erdbebenkatalog


- Österreichische Erdbebenkatalog
- Ergänzt durch <u>ISC Katalog</u>
- Relokalisierung der <u>Herdtiefe</u>
- Neuer Datensatz der Bebenmechanismen
- Erweitert mit <u>Momenten-Magnituden</u> (MW)

$$M_W = 0.42 + 0.82 M_L$$
 $|M_L < 4|$
 $M_W = M_L - 0.3$ $|M_L \ge 4|$

Momenten Magnitude – <u>Intensität</u>

$$I_0 = k_0 + k_1 M_w + k_2 \ln(h)$$


$$\begin{cases}
k_0 = 2,56 \\
k_1 = 1,32 \\
k_2 = -0,94
\end{cases}$$

Vollständigkeit des Erdbebenkatalogs

"Slope - Methode"

≥M _W	3.0	3.5	4.0	4.5	5.0	5.5	6.0
Aktuelle Studie "Slope"	1975	1895	1860	1800	1760	1500	1150
Österreich [1]		1895	1825	1800	1800	1550	1200
Deutschland [2]	1973	1869	1869	1869	1802	1650	1450
Schweiz [3]	1977		1880	1750	1680	1600	1200

- [1] Grünthal et al 2009
- [2] Grünthal et al 2017
- [3] Wiemer at el 2015

Amplituden Ausbreitungsmodelle

- Erstellung einer Ground-Motion Datenbank
- Entwicklung lokaler Ground Motion Prediction Equation (GMPE)

PGA, PGV, PSA, Intensität

Beste Anpassung an lokalen Datensatz! Zu wenige Daten im Nahbereich Keine Extrapolation zu größeren Magnituden

Auswahl von regionalen und globalen GMPE Statistische Parameter

GMPE	Datensatz	Bereich von M _w	Distanz [km]	Periode (s)
Weginger, 2018	Österreich	2.5 - 5.0	≤ 250	0.30 - 3.0
Bindi et al, 2014	Europa	4.0 - 7.0	≤ 300	0.02 - 3.0
Akkar et al, 2014	Europa	4.0 - 7.6	≤ 200	0.01 - 4.0
Boore & Atkinson, 2011	"Active Crustal Regions"	3.0 - 6.5	≤ 300	0.02 - 10
Bindi et al, 2017	Global	3.0 - 7.9	≤ 300	0.01 - 4.0

Modell

Zonen - Seismizität, Tiefe, Störungszonen Blöcke – tektonischer Strukturaufbau

Zonenfreies Modell

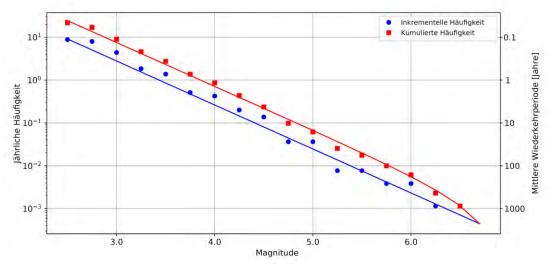
Isotropic-Gaussian Kernel (10 und 15 km) b-Wert von Österreich + Umgebung

Störungszonen-Model

Geometrie aus dem Projekt SHARE Verwendet als Flächen-Zonen mit Buffer

Magnituden-Häufigkeitsverteilung

Methode


Weichert

"Bayesian Penalized Max Likelihood"

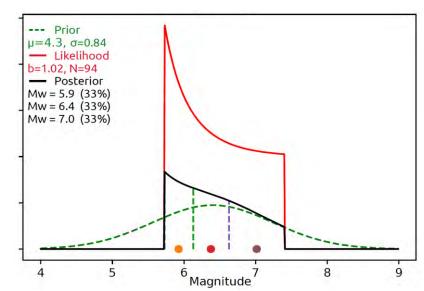
"Zones and Superzones"

Darstellung

"double-truncated Gutenberg-Richter" a, b, M_{min} , M_{max} und Erdbebenrate

MFD in Österreich +100km

Maximale Magnitude

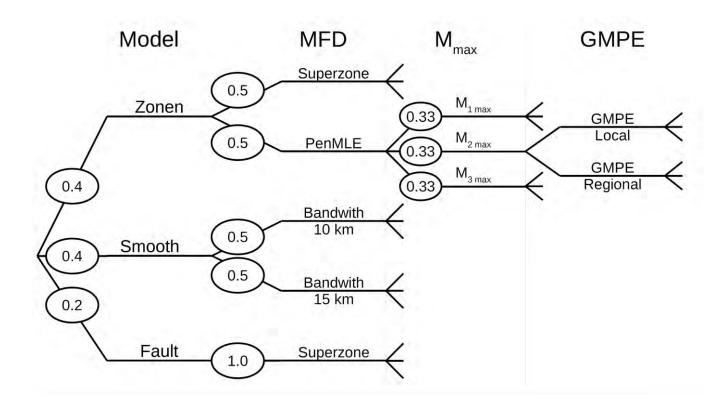

"EPRI" – Ansatz

Kombination von globaler Wahrscheinlichkeitsfunktion mit lokalen Messdaten

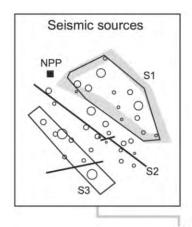
- Extended continental crust
- Non-extended continental crust

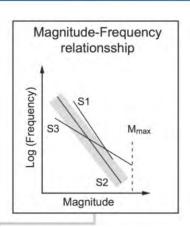
• Ergebnisse:

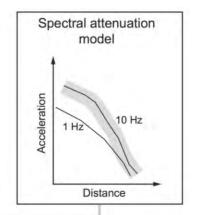
	b	M _{Max}	v(M _{Min}) normiert
S2	1.07	6.0	0.01
S3	0.89	6.1	0.05
A2	1.15	6.1	0.61
А3	1.04	6.5	0.29
A4	1.03	6.4	0.51
A6	0.85	6.3	0.06



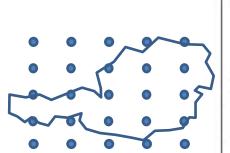
Erdbebenrate

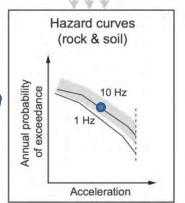

$$v(M_{min}) = \int_{M_{min}}^{M_{max}} 10^{a-bm} dn$$

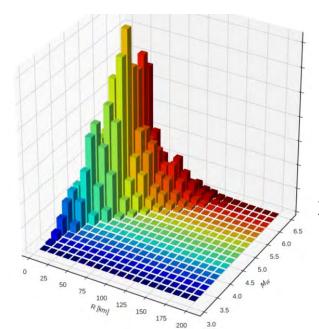


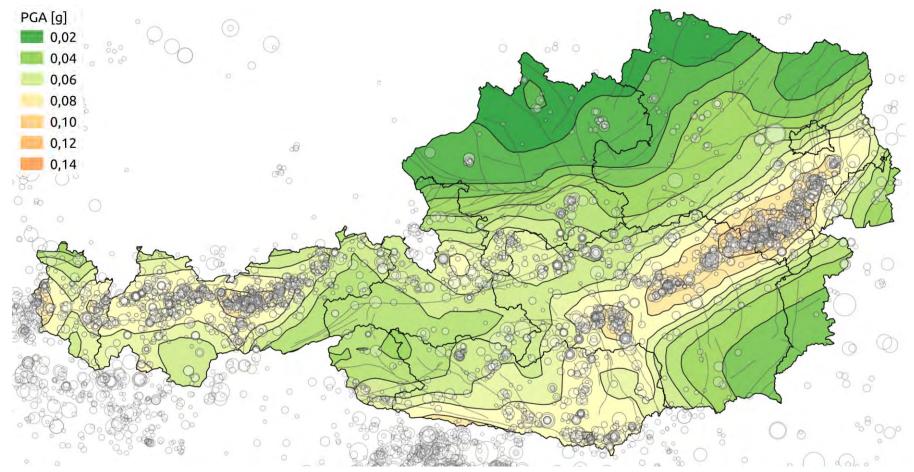

Entscheidungsbaum

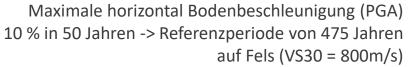
Open-Quake Engine



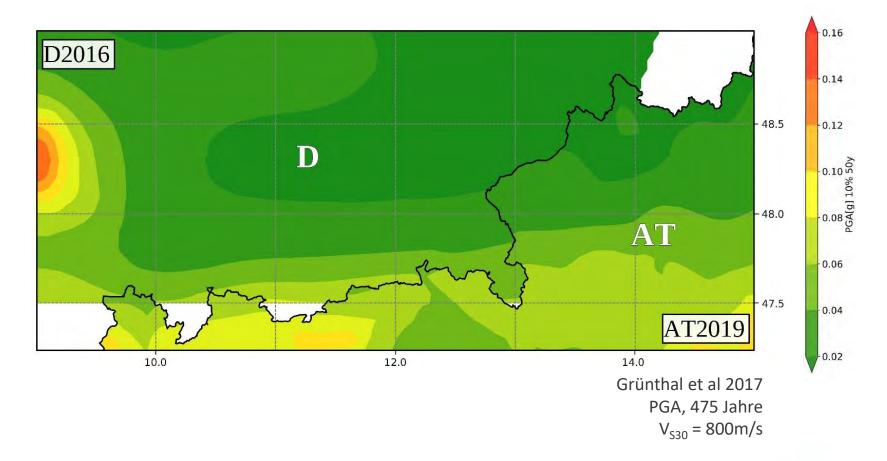






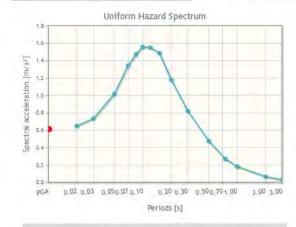


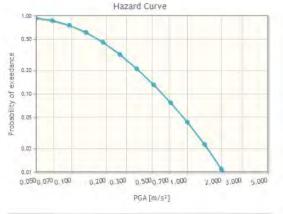
"De-aggregation Plot" für Wien (16.39 48.26)


Erdbebengefährdungskarte

Vergleich mit Deutschland 2016

Online Datenportal


Earthquake Hazard


Weginger, S. et al., 2019. Entwicklung einer regionalen Erdbebengefährdungskarte für Österreich. D-A-C-H Tagungsband, Volume 16. Zentralanstalt für Meteorologie und Geodynamik

Online Datenportal
Ort
Wiederkehrperiode
Bodenklasse

Periods [s]	Spectral acceleration [m/s²]
PGA	0.6168
0.02	0.6516
0.03	0.7377
n ne	4.0407

PGA [m/s²]	Probability of excedance
0.0088	1.000
0.0098	1.000
0.0196	0.999
0.0204	0.004

